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Segmentation:

Aggregation:

After the segmentation, we obtain four probability
maps. To summarize this information, we compute
distribution statistics for each map that are
aggregated into a unique feature vector.

Winner of the data challenge with a score of 0,9475.
Example on a whole slide image:

This work has been performed on data that were available during
the 2020 Data Challenge of the French Society of Pathology and
the Health Data Hub, with the support of Grand Defi for A.I. in
Health. We also thanks our collaborators : Dr. Farré and Dr
Tilmant, external pathologists and F. Ciompi, our scientific chair.

Context & Goal:

This challenge focused on epithelial lesions of the
uterine cervix and featured a unique collection of
thousands expert-labeled WSIs collected from
medical centers across France.
It gave access to a sizable dataset (3.3 TB) of
extremely high-resolution images. Given the scale of
the dataset, handling the data efficiently is a critical
problem to solve in the process of developing an
accurate approach to diagnosis.

The objective is to classify each image according to
the most severe category of epithelial lesion present
in the sample.
The classes are as follows:

Available training data:
• 1015 slides with a global label
• 5926 local square annotations within the labeled 

slides
• 2048 unlabeled slides (not used in our model)

Evaluation:

Testing data:
• 1500 hidden, labeled slides used for algorithm 

evaluation on a remote server

Scoring:
The score for each prediction equals 1 minus the error
from the following error table (some errors are more
penalizing than others):

The total score is the average across all predictions.

Computing time constraint

 16 h for 1500 slides (around 38 s per slide)
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Algorithm outline:

Training:

 DenseNet model pretrained on ImageNet
(database of millions of small images)

Some of the techniques that we used to improve our
training focused on getting more usable data:

 Data augmentation

 Hard negative mining (HNM)

The segmentation model, already trained, is applied
to slides with a normal global label, that are known not
to contain lesions. The model sometimes predicts that
there is a lesion (class 1-3) with a high probability.
These false positives are added to the training set, as
examples of images hard to predict.
It enhances training, as the model will see images
drawn from a wider distribution.

 Model ensemble
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