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Abstract

The evaluation of the Human Epidermal growth factor Receptor-2 (HER2) expression is
an important prognostic biomarker for breast cancer treatment selection. However, HER2
scoring has notoriously high interobserver variability due to stain variations between centers
and the need to estimate visually the staining intensity in specific percentages of tumor area.
In this paper, focusing on the interpretability of HER2 scoring by a pathologist, we pro-
pose a semi-automatic, two-stage deep learning approach that directly evaluates the clinical
HER2 guidelines defined by the American Society of Clinical Oncology/ College of Amer-
ican Pathologists (ASCO/CAP). In the first stage, we segment the invasive tumor over the
user-indicated Region of Interest (ROI). Then, in the second stage, we classify the tumor
tissue into four HER2 classes. For the classification stage, we use weakly supervised, con-
strained optimization to find a model that classifies cancerous patches such that the tumor
surface percentage meets the guidelines specification of each HER2 class. We end the sec-
ond stage by freezing the model and refining its output logits in a supervised way to all slide
labels in the training set.
To ensure the quality of our dataset’s labels, we conducted a multi-pathologist HER2 scoring
consensus. For the assessment of doubtful cases where no consensus was found, our model
can help by interpreting its HER2 class percentages output. We achieve a performance of
0.78 in F1-score on the test set while keeping our model interpretable for the pathologist,
hopefully contributing to interpretable AI models in digital pathology.
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1. Introduction

Breast cancer is the most prevalent cancer in women
worldwide (Sung et al., 2021), accounting for almost
one in four cancer cases among women. Between 15%
and 20% of breast tumors have higher levels of Human
Epidermal growth factor Receptor-2 (HER2) protein.
These types of cancer are called HER2-positive and tend
to grow and spread faster than HER2-negative cancer,
but are sensitive to specific treatments. Thus, correctly
assessing the HER2 expression is essential to determine
the best treatment for the patient.

To stratify patients between HER2-negative and
HER2-positive, an immunohistochemistry (IHC) test
is performed on a tumor tissue sample. Following the
American Society of Clinical Oncology / College of
American Pathologists (ASCO/CAP) guidelines (Wolff
et al., 2018), a score among 0, 1+, 2+, and 3+ is then
attributed by visually inspecting the stain intensities and
the surface percentages of differently stained invasive
cancer (see Table 1). However, it has been known for
two decades that this visual assessment is prone to a
significant inter-observer variability (Thomson et al.,
2001; Hoang et al., 2000), especially because of stain
variations between centers and the need to estimate
percentages in the tumor area.

With the development of digital pathology, computer-
aided solutions have been developed to act as a second
opinion for the pathologist (Niazi et al., 2019). Different
studies were conducted to automatically evaluate the
HER2 score on immunochemistry (IHC) slides such as
Qaiser and Rajpoot (2019) or Chen et al. (2021) and
showed a high concordance rate between the artificial
intelligence model and the pathologist scoring. However,
these methods do not provide a mean for the pathologist
to verify or interpret the model’s predictions because
they do not consider the whole invasive carcinoma but
only certain areas to compute the slide’s HER2 score.
Our work addresses this interpretability issue without
compromising our model performance by computing the
tumor surface of each HER2 class within the slide and
directly implementing the clinical constraints for HER2
scoring in a weakly supervised constrained approach.

To allow a pathologist to directly interpret the clinical
guidelines in terms of tumor surface percentages, we
propose a semi-automatic end-to-end pipeline (see Figure
1) that provides the tumor surface percentages, together
with the spatial class map representation (see Figure
12). The only human intervention is done at the first
step, which consists in indicating a Region of Interest
(ROI) over which the HER2 expression evaluation
will be computed. The purpose of the ROI is to avoid
stained tissues that are not taken into account for the
evaluation of HER2 expression such as carcinoma in situ
or stained benign glands (see Figure 3b, 3c). Within the
user-indicated ROI, a segmentation model separates the
invasive carcinoma from non-tumor area, and patches
around tumor area are extracted. Then, a model is trained
to classify the patches into four different patch classes (0,
1+, 2+, and 3+) corresponding to locally homogeneous
regions for the four HER2 slide scores of the same name
in Table 1. This means we classify the invasive cancer
surface as a proxy of the number of invasive cancer cells,
on which the guidelines are based. This proxy allows
us to avoid segmenting individual nuclei, thus avoiding
the need to analyze the slide at high magnification. We
derive constraints from the clinical guidelines to train the
model in a weakly supervised way so that it classifies
cancerous patches to meet the tumor surface percentage
constraints of each HER2 class. To further enhance
the model’s performance once it has been trained, we
freeze it and add a model calibration step to adjust its
logits in a supervised way to the slides’ labels. To the
best of our knowledge, we are the first to use such a
weakly supervised approach for directly implementing
the clinical constraints for HER2 scoring.

In this paper, we first do a literature review on HER2
scoring and the use of weakly supervised learning in
histopathology in Section 2. We then detail our con-
strained weakly supervised approach in Section 3. The
details of the implementation and the results of the exper-
imentation are presented in Sections 4 and 5, followed by
a discussion in Section 6.

2. Related works

In HER2 scoring, many methods rely on classifying
small patches sampled from the whole slide image (WSI)
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Table 1: Correspondance between ASCO/CAP guidelines and the algo-
rithm constraints. There are some rare heterogeneous staining patterns
that are not covered by the ASCO/CAP definitions mentioned in the ta-
ble. These slides are not considered for training but are discussed in
Section 6.1.

HER2
score

2018 ASCO/CAP guide-
lines

Algorithm con-
straints

0 No staining is observed
or membrane staining
that is incomplete and is
faint/barely perceptible in
≤ 10% of tumor cells

> 70% of tumor
surface is classified
as class 0

and < 10% of tumor
surface is classified
as class 1, 2 or 3

1+ Incomplete mem-
brane staining that is
faint/barely perceptible
and in > 10% of tumor
cells

≥ 10% of tumor
surface is classified
as class 1

and < 10% of tumor
surface is classified
as class 2 or 3

2+ Weak to moderate com-
plete membrane staining
observed in > 10% of tu-
mor cells

≥ 10% of tumor
surface is classified
as class 2

and < 10% of tumor
surface is classified
as class 3

3+ Circumferential mem-
brane staining that is
complete, intense and in
> 10% of tumor cells

and ≥ 10% of tumor
surface is classified
as class 3

and then aggregating the patch-level predictions to obtain
the slide-level prediction. The patch classification can be
done in two ways : fully supervised or weakly supervised,
which we describe in the rest of this section.

The fully supervised approaches classify all patches
within a segmented region obtained by classical image
processing techniques. For instance, Vandenberghe et al.
(2017) extracts all tiles within the slide’s foreground,
which correspond to the tissue sample. Oliveira et al.
(2020) uses Otsu’s method (Otsu, 1979) to segment
cancer tissues from 2+ and 3+ slides, and filters on the
HSV value for 0 and 1+ slides, removing patches with
the highest H corresponding to background patches. Van-
denberghe et al. (2017) trained a model to segment and
classify individual cancer cells, for which they manually
annotated 12 200 cells. Oliveira et al. (2020) assigns the
slide label to all its patches, which leads to an overclas-
sification bias as we show in Figure 7. To infer the slide
label from the patches predictions, Saha and Chakraborty
(2018); Vandenberghe et al. (2017) and Oliveira et al.
(2020) directly apply the ASCO/CAP clinical guidelines
from their supervised patch classification/segmentation.

In the field of weakly supervised methods, the se-
lection of the patches to be evaluated are learned by
the model. Inspired from the way pathologists evaluate
slides, screening at low magnification followed by a more
detailed inspection at high magnification, Qaiser and
Rajpoot (2019) propose a deep reinforcement learning
approach to automatically identify diagnostically relevant
ROI where patches at a magnification of 40× and 20×
are extracted. Chen et al. (2021) also implements an
automatic multi-scale patch selection by representing the
WSI as a tree-structured image and by using an attention
module to find discriminative regions. To predict the slide
label, they train a shallow classifier from the predicted
classes or feature vectors of the patches. Because these
weakly supervised approaches do not attribute an HER2
score to all patches with invasive carcinoma, they cannot
compute the number of cells of each HER2 score, and
hence cannot apply the ASCO/CAP clinical guidelines to
infer the slide’s HER2 score.

As the cell-wise annotation of HER2 expression re-
quires an extensive amount of annotations from an ex-
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pert, we prefer to use weak supervision (Campanella
et al., 2019) and let the slide’s label induce weakly super-
vised linear constraints on the patch percentages of each
class. In weakly supervised invasive cancer segmentation,
Lerousseau et al. (2020) have exploited the framework
of Campanella et al. (2019). They reframed the top-k
patches parameter for assigning pseudo-labels to patches
as two control parameters which indicate the percentage
of tumor and normal tissue that should be present in the
slide according to the pathology report. Dictating spe-
cific constraints on tumor surface percentages of differ-
ent HER2 classes can be seen as a multi-class implemen-
tation of the weakly supervised segmentation problem,
where we assign pseudo-labels to the top-K % patches
with probabilities of certain classes, but only for classes
that break linear constraints dictated by the clinical guide-
lines.
Thus, our approach leverages the advantages of both fully
and weakly supervised HER2 scoring paradigms: our
weakly supervised training does not require extensive ex-
pert annotations and still provides an interpretable output
for the slide’s label as we directly use the ASCO/CAP
clinical guidelines for training our model and predicting
the slide’s label.

3. Methods

3.1. Dataset
Our proposed framework is performed on HER2 IHC

stained slides of breast tissue. The dataset is composed
of 370 (WSI) coming from different sources, including
270 WSI from two different scanners of Erasme Hospi-
tal (Hamamatsu NanoZoomer S360 and Hamamatsu HT-
C9600-12), 50 WSI from Warwick HER2 scoring con-
test training set (Qaiser et al., 2018) scanned with the
Hamamatsu NanoZoomer C9600, and 50 WSI from the
Academia and Industry Collaboration for Digital Pathol-
ogy (AIDPATH) database. Erasme’s and Warwick’s
slides were provided with an IHC score (0, 1+, 2+ or
3+), Erasme scoring being conducted using the 2018
ASCO/CAP guidelines, such that 0 and 1+ slides were
both considered HER2-negative. Slides from AIDPATH
database only have the clinical outcome that is HER2 neg-
ative, positive and equivocal with respectively 37, 7, and
6 slides. The numbers of slides per class and scanner for
Erasme and Warwick datasets are summarized in table 2.

3.2. Invasive Carcinoma Segmentation Annotations

To train the tumor segmentation model, we asked
a pathologist to annotate tissue area on 71 WSI from
Erasme and AIDPATH using the Calopix software1. On
Erasme dataset, we annotated 20 mm² of class 0 from 15
slides, 23 mm² of class 1+ from 16 slides, 16 mm² of class
2+ from 6 slides, and 84 mm² of class 3+ from 6 slides.
On the AIDPATH dataset, 21 mm² were annotated from
22 HER2-negative slides, 9 mm² from 3 equivocal slides,
and 5 mm² from 3 HER2-positive slides. The annotations
were done in incremental steps according to the model
performance for each class until a target performance of
around 0.9 in F1-score was reached across all classes.

Table 2: Number of slides of each class from each dataset. Note that the
Erasme datasets are private and we use the training set of the Warwick
HER2 challenge as the test set.

Dataset Scanner Number of slides
per HER2 score

0 1+ 2+ 3+

Erasme Hamamatsu C9600 23 36 63 30
Erasme Hamamatsu S360 26 40 46 6
Warwick Hamamatsu C9600 13 12 12 13

3.3. Labeling HER2 slides using multi-pathologist con-
sensus for GEFPICS 2021 guidelines

The evaluation of HER2 expression is subject to a
significant inter-observer variability (Thomson et al.,
2001) because staining intensities vary from one center
to another (see e.g. figure 3). Moreover, the guidelines
for evaluating the HER2 expression requires to assess
specific percentages of invasive carcinoma cells across
the whole slide, which can only be eyeballed in practice.
This slide scoring variability not only has a detrimental
impact on patient treatment, but also can be seen as
label noise, prohibiting us from accurately modeling the
relationship between the HER2 stain intensity and the
slide’s HER2 score.

The recent development of drugs targeting HER2-low
cancer (Modi et al., 2020) has pushed clinical guide-

1https://www.tribun.health/calopix
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Figure 1: Our end-to-end pipeline for interpretable HER2 slide scoring. The pathologist is asked to choose a Region of Interest (ROI) in which to
compute the HER2 score of the slide. Within the ROI, the invasive cancer areas are segmented and patches are extracted within the tumor mask.
Then, a model is trained to classify the patches into four different classes corresponding to the HER2 scores. We derive constraints from the 2021
GEFPICS clinical guidelines (Franchet et al., 2021) to train the model in a weakly supervised way using only the slides’ labels. Once the model is
trained, we freeze it and add a supervised optimization step to adjust its logits in a supervised way to the labels of all slides in the training dataset
at the same time.

lines to refine the practices of HER2 assessment be-
tween HER2-negative and HER2-low cases. For in-
stance, in France, 2021 GEFPICS clinical guidelines
(Franchet et al., 2021) now include different clinical de-
cisions for HER-low cases which are 1+ and 2+ FISH-
negative cases, HER2-negative only corresponding to 0
cases. Some studies, such as Moutafi et al. (2022), suggest
new staining techniques to better stratify the lower ranges
of HER2 expressions, which highlights the difficulty of
differentiating 0 from 1+ cases with the current conven-
tional assays. To reduce label noise due to inter-observer
variability, we initiated a multi-pathologist labeling of
Erasme’s dataset keeping the 2021 GEFPICS recommen-
dations in mind. First, two pathologists scored indepen-
dently all Erasme’s slides. Then, for the cases where the
pathologists’ labels differed, we had a third pathologist

to independently score the disagreement cases. For cases
where the scoring was indicated as uncertain by all pathol-
ogists, or where all three pathologists had a different la-
bels, we had a consensus meeting to find the final label.
We did not annotate Warwick and AIDPATH datasets as
we did not have the control slides to guide the scoring.
For some boundary cases or heterogeneous cases where
the pathologists could not decide with confidence on the
final label, we set these slides aside to be evaluated later
with our trained model, and discuss them in the Section
6.1.
Figure 4 shows the differences in scoring between the
pathologists. The first confusion matrix on the left dis-
plays the scoring of pathologists 1 and 2 that were made
independently. The review of the discordant cases by
pathologist 3 is compared to the annotations of patholo-
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Figure 2: Patches with different HER2 expressions for all data sources
(magnification 10×, 1µm/pixel). The tumoral areas, shown in red, were
annotated by a pathologist. Note that the Warwick dataset was not anno-
tated as it was not used for training the tumor segmentation model and
that AIDPATH dataset does not have precise IHC scores but only the
clinical outcome (HER2 negative, equivocal, or positive).

gist 2 in the central confusion matrix. The matrix on the
right compares pathologist 1 labels to the labels assigned
after the consensus meeting between pathologists 2 and 3.

3.4. invasive carcinoma segmentation
To separate benign tissue from cancerous tissue, we

train a model to segment all tumor pixels from the WSI on
the annotated slides from Erasme and AIDPATH datasets.
Patches of size 256 × 256 are extracted at a magnifica-
tion of 10× (1µm / pixel) from the annotated areas. The
patches are randomly split into 80%, 10%, 10% for train-
ing, validation and test set. We perform a cross-validation
with 3 different splits to evaluate the model. The splits are
strictly done at the slide level, meaning that all patches
from the same slide end in the same set. For the train-
ing, we apply different augmentations to the patches using
the library albumentations (Buslaev et al., 2018) including
rotations, flipping, brightness and contrast variation, blur-
ring and, hue and saturation shift.

(a) Invasive carcinoma (b) Carcinoma in situ (c) Stained benign
glands

Figure 3: Different types of stained tissues. Only invasive carcinoma
must be taken into account for the evaluation of the slide’s HER2 score.
The pipeline is launched only within a Region Of Interest (ROI) selected
by the pathologist which excludes undesirable structures such as carci-
noma in situ, stained benign cells or artifacts.

Figure 4: Confusion matrices on the slide HER2 score between the dif-
ferent pathologists. From left to right: confusion matrix between pathol-
ogists 1 and 2 who scored all slides independently, confusion matrix
between pathologists 2 and 3 for discordant cases between pathologists
1 and 2, confusion matrix between pathologist 1 and the consensus of
pathologists 2 and 3.

We use a U-net (Ronneberger et al., 2015) of depth 4 with
a Densenet121 (Huang et al., 2017) as the encoder pre-
trained on ImageNet (Deng et al., 2009). The U-net is
fine-tuned using stochastic gradient descent (SGD) with a
Nesterov momentum of 0.9 as the optimizer with an ini-
tial learning rate of 10−4. We use a weighted focal loss
to account for class imbalance between tumor pixels and
non-tumor pixels. We also address the imbalance of do-
mains and slides’ HER2 scores by sampling equally the
patches with respect to the domains and HER2 score at
each epoch. The model is trained for 100 epochs with an
early stopping based on the validation loss.

3.5. Multi-stage HER2 patch classification

In this section, we first introduce the partial-label loss
(section 3.5.1) used for the weakly supervised training of
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the model. We then detail the 3 steps of our optimiza-
tion process which are the pretraining of the neural net-
work in Section 3.5.2, the weakly supervised training in
Section 3.5.3, then the fully supervised optimization in
Section 3.5.4. The model’s inputs are patches extracted
at size 64 × 64 at magnification 10× (1µm / pixel). Only
patches with more than 10% of invasive carcinoma sur-
face are kept for training and evaluation, which results in
96% on average of the total surface of invasive carcinoma
within the user-indicated ROI being treated.

3.5.1. Defining Partial-Label Cross-Entropy Loss

In the Multiple Instance Learning (MIL) paradigm,
only the bag’s label (the slide) is known while its in-
stances’ labels (the patches) remain unknown during
training. However, the bag’s label can give information
on its instances’ label. In the case of HER2 scoring, the
ASCO/CAP clinical guidelines provide such information
(see Table 1) about the proportions of stained invasive car-
cinoma cells of each class. We take the tumor surface
within classified patches as a proxy for actually having
the number of cells. A HER2 slide can be misclassified
in two ways: it can either be overclassified because there
are too many patches classified as a class higher than the
known class, or it can be underclassified because there are
not enough patches classified as the known class. For in-
stance, for a slide of known class 1+, if the model predicts
the tumor surface fractions as V = [0.50, 0.36, 0.14, 0] for
class 0, 1+, 2+, 3+, we must reduce by at least 4% the
amount of tumor surface of class 2+ to be in agreement
with the slide’s label. We know that the 4% in excess of
2+ patches cannot be of class 2+ but their true label can
be any of the other classes. Thus, we are in the case of
partial labeling where for some patch x, its true label y is
unknown but a set of admissible labels G is known such
that y ∈ G. Fick et al. (2021) introduce a partial-label
cross-entropy (CE) loss to learn from these partial labels
which is defined as follows.
Let ŷ be the model prediction after a softmax layer, G the
set of admissible class, the partial-label CE loss is defined
as :

Lpart(ŷ) = LCE(ȳ, ŷ) =

L∑
j=1

−ȳ jlog(ŷ j) (1)

where ȳ is the pseudo-label whose expression is:

∀ j ∈ ~1, L�, ȳ j =

 ŷ j +
1
|G|

∑
k<G ŷk if j ∈ G

0 if j < G
(2)

A key property of the partial-label CE loss is its gradient
neutrality towards the admissible classes, meaning that
the patch is pushed equally towards each admissible class,
as we have no information to prioritize one over the oth-
ers.

3.5.2. Baseline model used as pretraining
To pretrain our classification model to extract features

that are relevant for the HER2 IHC domain, we train a net-
work in a supervised way by assigning to every patch its
slide label as done by Oliveira et al. (2020). This approach
introduces an overclassification bias because it assumes
that the tumor in the entire slide is homogeneous and only
consists of the slide’s label. In practice, classes lower than
the slide’s class can exist in significant amounts in the
same slide as shown in Figure 9, as long as the propor-
tions of the ASCO/CAP clinical guidelines are respected.
So this supervised way of training is an approximation of
the patches’ true labels. Although the given labels to the
patches do not necessarily match their true labels, this ap-
proach still allows the network to learn appropriate feature
extraction based on histopathological images. We trained
a Resnet18 pretrained on ImageNet using SGD with Nes-
terov momentum of 0.9 with an initial learning rate of
10−3 for 100 epochs with a batch size of 512. The train-
ing was stopped if the validation accuracy did not improve
during 20 epochs.

3.5.3. Constrained weakly supervised classification
Inspired by the ASCO clinical guidelines, we adopt

a weakly supervised approach for classifying tumor
patches constrained on the proportions of tumor of each
class with respect to the slide’s label. The training
pipeline for the patch classification model is as follows
(see Figure 1):
At each epoch, we first do an inference loop over all
slides in the training set where all the patches within
the ROI and invasive carcinoma segmentation mask are
classified.
Then, the percentage of the stained tumor surface of each

6



class is computed for every slide. Wrong predictions
at the slide level mean that the patch classification
model does not respect the clinical guidelines. Our
goal is to encourage the classification model to classify
patches such that the percentage-based constraints at
the slide level are satisfied. Thus, for each epoch, we
must select patches from classes that were over- and
under-represented for training slides of all classes, and
push them away or toward the class in question. We base
this selection procedure on the predicted class probability
of each class like done by Campanella et al. (2019) in
their weakly supervised approach: we push away patches
whose probability for the over-represented class is lowest,
and inversely push patches with the highest probability of
the under-represented (but are not classified as that class)
towards that class. This patch selection process defines
the training set for the epoch. Thus, the training set for
each epoch changes depending on which constraints on
which slides are broken.

More formally, we note fθ the network for patch clas-
sification where θ are the parameters of the model. Let
consider a slide X = {xi}

N−1
i=0 of class Y ∈ ~0, 3�, with N

its number of patches. For all i ∈ ~0,N − 1�, we note:

• vi ∈ [0, 1] the proportion of tumor pixels in the patch
xi, normalized with respect to the total tumor surface
in the slide’s ROI annotation, such that

∑N−1
0 vi = 1.

• ŷi = argmax (softmax( fθ(xi))) ∈ ~0, 3� the predicted
class of the patch xi.

Let us define the upper and lower thresholds matrices
based on the ASCO clinical guidelines (see Table 1).

L =


0.7 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 U =


0 0.1 0.1 0.1
0 0 0.1 0.1
0 0 0 0.1
0 0 0 0


(3)

The matrix L indicates class fractions that a slide must
have at least to be of a certain class and U the fractions
to which each tumor surface of a certain class must be
lower, otherwise, the slide would be overclassified.

In this section, we use the following notation for
conditional sum. Given a set E and some scalar (αi)1≤i≤N ,

∑
0≤i≤N
if i∈E

αi means that we sum only the αi whose index i is

in the set E.

We introduce the class fractions vector V = (Vc)0≤c≤3
defined by :

∀c ∈ ~0, 3�,Vc =
∑

0≤i≤N−1
if ŷi=c

vi (4)

such that 0 ≤ Vc ≤ 1 and
∑3

c=0 Vc = 1.
The constraints are written as follows:

∀c ∈ ~0, 3�,Vc < UY,c (5)

VY ≥ LY,Y (6)

If one of the upper constraints is broken, it means that
there exists a class higher than the slide’s known class,
ie. c > Y , such that Vc − UY,c ≥ 0 which is the surface
proportion of the invasive carcinoma in excess of class c.
Thus, we must change the prediction of Vc − UY,c of the
tumor surface proportion to meet the clinical guidelines.
For this, we sort the patches classified as class c by the
model probability for that class :

0 ≤ fθ(xi1 )c ≤ . . . ≤ fθ(xiN )c ≤ 1 (7)

For a set of classes E, we define the cumulative distri-
bution function (CDF) of invasive carcinoma surface pro-
portion of patches classified in E by :

CDFE : ~0,N − 1� → [0,Vc]
n 7→

∑
0≤i≤n

if ŷik∈E

vik (8)

The patches with the lowest probabilities are selected
until the tumor surface in the remaining patches is less
than the exceeded constraint. We choose the lowest prob-
ability ones because they are the ones that are most likely
to be misclassified. Let nu

c be the upper cutoff index for
class c, meaning that patches xik for k ≤ nu

c are going to
be added to the training set so they are pushed away from
class c. We take :

nu
c = argmin

n
CDFc(n)

s.t. CDFc(n) ≥ Vc − UY,c

(9)
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Thus, the patches selected to be added to the training set
because the upper constraints are broken are as follows :

S u
c =

{
xin | n ∈ ~0, n

u
j�

}
(10)

If the lower constraint is not respected, it means that
LY,Y − VY > 0 which is the missing tumor surface propor-
tion of the slide’s class. Patches from neighboring classes
are selected until the tumor surface of the slide’s known
class is higher than the lower constraints. The patches’ se-
lection is based on their probability to belong to the slide’s
class, the ones with highest probabilities being selected:

0 ≤ fθ(xi1 )Y ≤ . . . ≤ fθ(xiN )Y ≤ 1 (11)

Let nl be the lower cutoff index, meaning that patches xik
for k ≥ nl are going to be added to the training set so they
are pushed toward the slide’s known class Y .

nl = argmin
n

1 −CDF{Y+1,Y−1}(n)

s.t. 1 −CDF{Y+1,Y−1}(n) ≥ LY,Y − PY

(12)

Thus the patches selected to be added to the training set
because the lower constraints are broken are :

S l =
{
xin | n ∈ ~n

l,N�
}

(13)

Taken together the selected patches for all broken upper
and lower constraints, the subset of patches from the slide
used as the training set is defined by:

S =

3⋃
c=0

S u
c ∪ S l (14)

Our approach is motivated by Campanella et al. (2019)
who select patches with the highest probability and attach
a pseudo-label to it based on the slide label. However,
we apply their approach class-wise and do the opposite
(selecting patches with the lowest probability) for broken
upper constraints.
Let S u =

⋃3
c=0 S u

c be the set of patches coming from upper
constraints and S l the set of patches coming from lower
constraints such that S = S u ∪ S l. To enforce the model
prediction to respect the ASCO guidelines, we want to
change the model prediction for patches in S u. We want

to assign pseudo-labels to the selected patches such that
their probabilities move away from their current exceed-
ing classes but we do not know to which class they belong.
Thus, the partial-label CE loss is applied to push equally
these patches to their neighboring classes.
For patches coming from S l, the goal being to push them
towards the slide’s class Y to meet the lower-bound con-
dition, a classical cross-entropy is applied with respect to
the slide’s label Y . With NS being the number of slides,
the optimization problem for the epoch is written :

argmin
θ

NS∑
i=1

 ∑
x∈S u(i)

LCE(Yi, fθ(x)) +
∑

x∈S l(i)

Lpart( fθ(x))


(15)

where S u(i) are the patches that are overclassified, and
S l(i) the patches missing from the slide’s class for slide i.

3.5.4. Supervised optimization on the slides’ labels
To further increase the performance of our end-to-end

pipeline, we perform one more optimization on the neu-
ral network logits output. After the weakly supervised
optimization, the weights of the classification model are
frozen and its logits are finetuned in a supervised way to
the labels of all the slides in the training set. For misclas-
sified slides, we aim at minimizing the distance between
the thresholds and the proportions of tumor of the classes
in excess or missing.
Let NS be the number of slides in the training dataset, ni

the number of patches for slide i, and N =
∑NS

i=1 ni the total
number of patches for all slides in the training dataset. Let
M ∈ RN×4 be the matrix obtained by vertically stacking
the logits vectors output by the network for all patches.
Although the number of patches N is a very large num-
ber, the matrix M fits as once in the memory because each
patch is now compressed to its four logits.

M =



L1,0 · · · L1,3
...

...
Ln1,0 · · · Ln1,3
...

...
LN,0 · · · LN,3


∈ RN×4 (16)

Let us define α = (α0, α1, α2, α3) ∈ R4 the parameters
to optimize. They are initialized at the value (1, 1, 1, 1)
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meaning that the model output logits are not initially mod-
ified. The patches’ HER2 classes are predicted by the for-
mula:

ŷ =


ŷ1
...

ŷN

 = argmax
(
softmax

(
M ∗ Diag(α0, α1, α2, α3)

))
(17)

From the patches’ HER2 score predictions ŷ and the num-
ber of tumor pixels per patch, we can compute the pro-
portion of tumor surface for each slide. For a given slide
i ∈ ~1,Ns�, let us note (vi)1≤i≤ni the proportion of tumor
pixels in its patches given by the invasive carcinoma seg-
mentation model. The proportion of tumor surface Vi,c of
class c ∈ ~0, 3� in the slide is given by:

Vi,c =

∑ni
k=1 vk1[ŷk = c]∑ni

k=1 vk
(18)

Note that for any slide i ∈ ~1,Ns�,
∑3

c=0 Vi,c = 1.
Let V be the matrix of the proportion of tumor surface of
all slides in the training set:

V =


V1,0 · · · V1,3
...

...
VNS ,0 · · · VNS ,3

 ∈ [0, 1]NS×4 (19)

Using the upper and lower thresholds matrices based on
the ASCO clinical guidelines defined in Eq. 3, the su-
pervised optimization on the slide’s labels to minimize
the distance between the thresholds and the tumor surface
proportion is :

argmin
α

Ns∑
i=1


(
Lŷi,ŷi − Vi,ŷi

)+
+

∑
0≤c≤3
if c>ŷi

(
Vi,c − Uŷi,c

)+

 (20)

where x+ = max(0, x) denotes the positive part of x.

4. Implementation

The experiments were done using PyTorch 1.7.1
(Paszke et al., 2019) on an HP Z2 G4 Tower Worksta-
tion equipped with an NVIDIA GeForce RTX 2070 GPU
and an Intel Core i7-8700 CPU. For the fully super-
vised optimization with respect to the slides’ labels, we

used the Scipy 1.6.2 (Virtanen et al., 2020) implementa-
tion of Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm to minimize our cost function.

5. Results

In this section, we show qualitative and quantitative re-
sults of the invasive carcinoma segmentation model and
the HER2 patch classification model. For the latter, we
compare the performances of the model at each stage (pre-
trained, weakly supervised, and finetuned) to evaluate the
performance improvements made by each of them.

5.1. Invasive carcinoma segmentation

The pixel-wise tumor segmentation network is evalu-
ated on patches split by their slides’ HER2 score to ac-
count for the different staining intensities. The qualitative
results for each HER2 score is shown in Figure 5. To
assess quantitatively the model performance, we use the
Dice score, precision, and recall that are computed sepa-
rately for each HER2 score in table 3. For a given class
(tumor / non-tumor), let us note T P, FP, and FN the num-
bers of true positive, false positive and false negative pix-
els. The above metrics are defined by:

Precision =
T P

T P + FP

Recall =
T P

T P + FN
Dice =

2
Precision−1 + Recall−1 =

2T P
2T P + FP + FN

(21)
Our segmentation network achieves a performance of

above 0.82 in Dice score on the test set on all classes, 0
and 1+ being the most challenging as the intensity of the
staining is weaker.

5.2. HER2 Patch classification

To show the effect of our 3-step approach, we evaluate
our pipeline at each stage. For each stage, we compute
the macro F1-score and the confusion matrix of the model
on the training and test sets (see Figures 7 and 8). The
baseline model trained in the same way as Oliveira et al.
(2020), which is used as pretraining, already performs
well on HER 2+ and 3+ classes, with F1-scores above
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Table 3: Pixel-wise metrics of the binary tumor segmentation model on
the training, validation and test sets stratified by the slide HER2 score.

(a) Training set

Slide
HER2 score Precision Recall Dice score

0 .886 ± .029 .861 ± .052 .872 ± .014
1+ .853 ± .039 .925 ± .025 .887 ± .016
2+ .815 ± .028 .875 ± .025 .844 ± .006
3+ .901 ± .019 .950 ± .017 .925 ± .005

(b) Validation set

Slide
HER2 score Precision Recall Dice score

0 .903 ± .016 .897 ± .053 .900 ± .034
1+ .864 ± .093 .916 ± .030 .888 ± .064
2+ .906 ± .013 .960 ± .013 .932 ± .002
3+ .897 ± .024 .921 ± .024 .909 ± .003

(c) Testing set

Slide
HER2 score Precision Recall Dice score

0 .822 ± .105 .839 ± .107 .822 ± .025
1+ .841 ± .081 .905 ± .014 .870 ± .037
2+ .909 ± .012 .937 ± .013 .923 ± .003
3+ .845 ± .024 .938 ± .025 .888 ± .006

0.92 both on the training and testing set. However, it over-
classifies slides with lower HER2 scores, 0 slides being
classified as 1+, and 1+ as 2+. This issue is corrected
by the weakly supervised training, especially for class 0
slides, but there is still some confusion for 1+ slides. The
use of the clinical guidelines as linear constraints in the
weakly supervised training prevents the model from over-
classifying patches as the amount of patches of each class
are constrained by the slide class: a slide cannot have too
many patches from higher classes, which results in better
predictions at the slide level. The final supervised fine-
tuning on the logits improves the model’s prediction for
lower classes, especially 1+ slides. Figure 6 shows some
inference results on slides of different HER2 score.

Figure 5: Heatmap of the binary segmentation network output in the
right column. The ground truth obtained from the pathologist’s anno-
tated is shown in green in the left column. The images are shown in
magnification 10× (1µm/pixel). The first row shows a case where the
model output is more precise than the manual annotations.

5.3. Using our end-to-end pipeline to study HER2 class
hetereogenity

In order to interpret the predictions of our model, we
are interested in the distributions of the different HER2
phenotypes predicted within every slides of in the training
and testing datasets. The purpose is to see how much of
tumor surface of different HER2 patch classes is present
in slides that were classified as a certain overall HER2
slide score. Thus, we plot a Kernel Density Estimation
(KDE) of the tumor surface fraction for each phenotype
grouped by slides’ HER2 scores. The result are shown
in Figure 9 for the training set and Figure 10 for the test
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Figure 6: Visualization of the HER2 patch classification model output.
Class 0 patches are represented in green, 1+ patches in blue, 2+ in pink
and 3+ in yellow.

set. Each row represents the slides’ HER2 score and each
column the patches grouped by HER2 score. The dotted
lines are the constraints dictated by the ASCO/CAP
clinical guidelines (described in Table 1 and Equation 3).
The graphs below or above the diagonal represent the
proportion of invasive carcinoma from a lower or higher
class than the slide’s known class respectively.
In the first row, which corresponds to slides with a HER2
score of 0, one can see that most slides have more than 70
% of their invasive carcinoma classified as 0. Although
there are still a few slides with some non-negligible
fraction (≥ 10%) of 1+ invasive carcinoma, the fraction
of higher classes invasive carcinoma is concentrated
below 10%, which corresponds to the threshold defined
by the ASCO/CAP clinical guidelines.
In general terms, for slides with a score between 0 and
2+, the graphs above the diagonal show the effect of
the upper linear constraints derived from the clinical

Figure 7: Confusion matrices for each step of our end-to-end framework
for scoring HER2 slides. The confusion matrices show the performances
on the training set (left column) and test set (right column). Every stage
improves the metrics over the previous one.

guidelines, which limit the amount of invasive carcinoma
classified as higher HER2 classes: all of the invasive
carcinoma surface fractions are concentrated below 10%.
For 1+ and 2+ slides, the lower-classes tumor surface
fraction distributions are spread out, which highlights
the heterogeneity within these classes. Heterogeneous
slides represent hard cases for pathologists as the risk
of error due to the selection of the region of interest is
more significant. On the contrary, 3+ slides are very
homogeneous as there are almost no 0 and 1+ invasive
carcinoma in these slides.

6. Discussion

In this work, we proposed and implemented a con-
strained weakly supervised approach for HER2 scoring.
For the sake of interpretability, we chose to directly
implement in our pipeline the ASCO/CAP guidelines
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Figure 8: Macro-averaged F1-score for each step of our end-to-end
framework for scoring HER2 slides. Every stage improves the metrics
over the previous one, the final stage yielding a macro F1-score of 0.78
on the hold-out test set.

based on the tumor surface percentages. We use the
surface as a proxy for the number of cells, which we
argue is reasonable since cell size usually does not vary
a lot within the same slide. Our pipeline contrasts with
other approaches for HER2 scoring like Chen et al.
(2021) who use an aggregation model on top of their
weakly supervised patch classification model. Thus,
they no longer follow the clinical guidelines but directly
optimize their network on the slides’ labels which are
noisy as shown by Thomson et al. (2001), Hoang et al.
(2000) and Figure 4. Indeed, we found that there was a
30% discordance rate between pathologists 1 and 2.
As we conducted a multi-pathologist consensus to
mitigate the label noise of the slides used for training the
model, there were some cases where both pathologists
were hesitant and used the FISH results to guide their
decision, which is a piece of information that the model
does not use. For these hard cases, the interpretability of
our model acts as a second opinion, by providing useful
insight into the proportions of invasive cancer surface for
each HER2 score.

As the first step in our pipeline, the invasive carcinoma
segmentation model achieves an average Dice score of
above 0.91 on the test set on slides of class 2+ and 3+.
The results for classes 0 and 1+ were slightly worse,
at Dice scores 0.82 and 0.87 respectively. These slides
were also the hardest slides to annotate, which could also

Figure 9: Kernel Density Estimations (KDE) for each HER2 class tu-
mor surface fraction by slides’ HER2 scores on the training set. Each
row represents a slide HER2 score and each column the patches HER2
scores. For slides of a known HER2 score, the tumor surface fraction
of lower HER2 classes (corresponding to graphs below the diagonal) do
not follow particular distributions as there are no constraints on these
fractions. For higher HER2 classes (corresponding to graphs above the
diagonal), our weakly constrained optimization enforces their surface
fraction to be below 10%

impact negatively the results as stated by Vadineanu et al.
(2021).

Both invasive carcinoma segmentation and the HER2
patch classification models process images at a magnifi-
cation of 10× (1µm/pixel) contrary to other studies that
work at 20× or even 40× such as Vandenberghe et al.
(2017) or Chen et al. (2021). To compare our results,
we group 0 and 1+ slides in the same category (HER2-
negative) as they do. They achieve a macro-averaged
F1-score of 0.751 on the whole data cohort and 0.907
on four-fold cross-validation respectively. Despite pro-
cessing the image at half or a quarter of their resolution
respectively, we reach similar or better performances
as we achieve a macro-averaged F1-score of 0.887 on
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Figure 10: Kernel Density Estimations (KDE) for each HER2 class tu-
mor surface fraction by slides’ HER2 scores on the Warwick training
set, which we use as a hold-out test set.

our hold-out test set. Working at a lower magnification
induces a faster inference time, so that using our solution
does not reduce the pathologist’s working speed.
As for our proposed workflow, shown in Figure 1, we
still require a pathologist to draw a ROI on the slide. One
improvement would be to make the segmentation model
able to segment invasive carcinoma from carcinoma in
situ and benign stained tissue in addition to benign tissue.
On Hematoxylin and Eosin (HE) stained slides, Kanavati
et al. (2022) built a model to segment invasive carcinoma
in situ by using a Convolutional Neural Network (CNN)
followed by a Recurrent Neural Network (RNN). Adding
this step would make our pipeline fully automatic and
more accurate as the whole invasive cancer surface will
be taken into account to determine the slide’s HER2
score.
To do HER2 scoring on segmented invasive carcinoma,
we decide experimentally to keep patches with more
than 10% of invasive carcinoma surface for the HER2

patch classification step. This allows us to treat 96% on
average of the invasive cancer within the drawn ROI.
In particular, patches with little invasive cancer surface
are the ones on the boundary of cancer tissue or isolated
cancer cell clumps, and thus contain a lot of benign
tissues. Experimentally, we found that these patches
tend to be under-classified compared to the HER2 score
the cancerous tissue should have even though they were
specifically included in the training. Although improve-
ments can still be made for isolated infiltrating cancer
patches, we observed that this issue does not significantly
impact the global HER2 scoring. Considering HER2
scores 0 and 1+ as two different classes, we finally
obtain a macro-average F1-score of 0.78 in predicting
the slides’ HER2 scores on the hold-out test set and
only make mistakes on adjacent classes (see Figures 7
and 8). On the training set, where the true slide labels
were obtained through a multi-pathologist consensus,
the model achieves a macro-average F1-score of 0.80,
where pathologist 1 achieves an F1-score of 0.71 and
pathologist 2 (who participated in the final consensus
meeting) an F1-score of 0.91.

To verify the generalization of our model to different
domains (see Figure 2), we evaluate our pipeline on the
AIDPATH dataset as the other datasets were scanned with
scanners all from Hamamatsu. The scanner for the AID-
PATH dataset was unknown but the stain expression is
visibly different from our training set as shown in Figure
2. As this dataset’s labels were HER2-negative, equiv-
ocal and HER2-positive, we grouped the slides with a
predicted class of 0 or 1+ slides together in the HER2-
negative class. We get a macro-averaged F1-score of 0.77.
Figure 11 shows that the only error occurs for equivocal
slides, whereas HER2-negative and positive slides are all
well classified.

6.1. Analysis of rare heterogeneous HER2 Slides
In the clinical guidelines, rarely occurring heteroge-

neous HER2 slides are those which contain a nonzero
- but less than 10% - tissue fraction of an HER2 class
which is two or more classes higher than the class it
would be given if we were to directly evaluate the clinical
guidelines in Table 1. For instance, for the slide shown
in Figure 12, the predicted HER2 class surface fractions
are [82%, 9%, 9%, 0%]. The predicted class according
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Figure 11: Confusion matrix on AIDPATH dataset used as a test set.
Note that we only know the clinical outcome for this dataset (HER2-
negative, HER2-equivocal, and HER2-positive). There are only mis-
classification for equivocal slides. The cells with thick borders represent
correct predictions : HER2-negative corresponds to classes 0 and 1+,
HER2-equivocal to class 2+, and HER2-positve to classes 2+ and 3+.

to the principal guidelines is 0, whereas the clinical
guidelines recommend that the slide be classified as 1+

so that under-treatment of the patient is avoided. In the
same way, heterogeneous slides that have a nonzero but
less than 10% fraction of 3+ invasive carcinoma should
be classified as 2+, regardless of the proportion of the
other classes. For such cases, we believe that the spatial
class map interpretability that our model provides can be
helpful for pathologists, especially for borderline cases.

7. Conclusion

In this paper, we presented an interpretable weakly su-
pervised constrained deep learning model for HER2 scor-
ing. We directly leveraged the ASCO/CAP guidelines,
both as constraints for training our model, and for infer-
ence, to compute the slide’s class from the classes of the
patches. Throughout our work, we focused on the inter-
pretability of our model, for the pathologist especially,
by outputting a HER2 class map along surface percent-
ages for the invasive cancer within the slide. By studying
the distribution of the tumor surface percentages of each
HER2 score, we were also able to quantify HER2 intra-
class heterogeneity, leading to a better understanding of
the inter-observer variability in HER2 scoring.

Figure 12: HER2 class map generated by our model. Invasive cancer of
HER2 class 0 is represented in green, class 1+ in blue, and class 2+ in
pink. The surface of 2+ tumor is just below 10%, classifying the slide
as 0 although it is closer to a 2+ from a clinical point of view. The
visualization allows the pathologist to understand quickly the decision
of the model.
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