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ABSTRACT

In histology, the presence of collagen in the extra-cellular
matrix has both diagnostic and prognostic value for cancer
malignancy, and can be highlighted by adding Saffron (S)
to a routine Hematoxylin and Eosin (HE) staining. How-
ever, Saffron is not usually added because of the additional
cost and because pathologists are accustomed to HE, with
the exception of France-based laboratories. In this paper, we
show that it is possible to quantify the collagen content from
the HE image alone and to digitally create an HES image.
To do so, we trained a UNet to predict the Saffron densities
from HE images. We created a dataset of registered, restained
HE-HES slides and we extracted the Saffron concentrations
as ground truth using stain deconvolution on the HES im-
ages. Our model reached a Mean Absolute Error of 0.0668
± 0.0002 (Saffron values between 0 and 1) on a 3-fold testing
set. We hope our approach can aid in improving the clinical
workflow while reducing reagent costs for laboratories.

Index Terms— Digital Pathology, Deep Learning, Seg-
mentation, Stain Estimation, Collagen

1. INTRODUCTION

HE is the primary tissue stain worldwide in histology and is
the foundation for pathological diagnosis of many diseases.
The Hematoxylin stains cell nuclei a purplish blue and Eosin
stains the extracellular matrix and cytoplasm pink, allowing
visualization of different cellular and extracellular structures.
In French laboratories, Saffron is commonly added to the HE
stain to highlight collagen fibers in the connective tissue of
the extracellular matrix with an orange hue (Figures 1 and
3 show examples of HE and HES images). Visualization of
collagen is beneficial for diagnosis of many tumor and non-
tumor disease processes. In oncology, this stain allows better
visualization contrasting the connective tissue stroma against
the tumor cells and enable quantification of the stroma which
has been shown to have prognostic value [1]. In some liver
diseases, the quantification of the fibrosis - which is mostly
collagen - also have a prognostic value [2]. It is therefore

of great interest to develop a deep learning model which ac-
curately estimates the collagen from an HE slide, facilitating
diagnosis at lower cost.

As it can be seen in Figure 3, the visual cues for collagen
are present in the HE slides, but they are not easily identifi-
able as these features share the stain color of the Eosin. It has
been shown that it is possible to reliably predict special stains
from HE using conditional Generative Adversarial Networks
(cGANs) on registered restained slides [3]. Thus, we expect it
is also feasible to accurately estimate the collagen from HE,
because the Saffron only highlights the patterns that are al-
ready there. However, in contrast to [3], we are interested not
only in visualizing a generated HES image as virtual stain, but
also to quantify the spatial collagen concentration. Our aim
is to estimate the pixel-wise collagen content through Saffron
that can be extracted from the images via stain deconvolution,
instead of the RGB pixel values. Finally, to display the pre-
dictions in a way the pathologists are accustomed to, we can
add the estimated Saffron concentrations to the HE images
and reconstruct an HES image.

2. MATERIALS AND METHODS

In this section, we present our methodology for creating a
deep learning model that can predict pixel-wise collagen con-
centration from an HE image and use it to virtually create an
HES image. First, in Section 2.1. we describe our dataset.
Then, in section 2.2 our HE-HES registration approach. In
2.3 our stain deconvolution approach to create the ground
truth collagen concentration map from the HES, and in 2.4
our deep learning approach. Finally, in 2.5 we explain how
we virtually stain the HES.

2.1. Dataset Acquisition

Our dataset 1 is composed of seven canine surgical samples
of the breast cancer. First, routine HE slides were created and
the slides were scanned using a 3DHistech Panoramic Scan

1The dataset was created at the University of Veterinary Medicine Vienna
with ethical permission.
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II with an objective magnification of 20x (scan resolution:
0.5µm/pixel). Then the cover slid of the HE slides was re-
moved and the slides were incubated in Saffron solution as
per standard protocol and the HES slides were scanned. Fi-
nally, we get a dataset with seven pairs of slides with a total
tissue surface of 4.5 cm2.

2.2. Slide Registration

The re-staining process results in an image that has mini-
mal tissue deformations and that mostly can be registered
by using only rigid transformations (rotations and transla-
tions) between pairs of HE-HES slides. To get the correct
Saffron concentrations associated with each pixel of the HE
slides, we performed robust HE-HES WSI registration using
an open-source Quad-Tree-based method [4], and created
pixel-perfect matching HE-HES patches using a secondary
affine registration applied to each patch location.

2.3. Ground Truth extraction via stain deconvolution

As the Saffron stain intensity in HES slides is proportional
to the collagen content, we consider the prediction of Saffron
stain intensity as a proxy task for collagen content. How-
ever, in the HES tiles the information of the different stains
is mixed up in the 3 color channels and we need to extract
the ground truths saffron concentrations HS ∈ [0; 1]n from
these multi-stain (H-E-S) images. To do so, we used stain de-
convolution [5] which relies on the empirical Beer Lambert
Law that states that there exists a linear relationship in the
optical density space between the staining concentrations and
the RGB intensities. Let IHES ∈ [[0 ; 255]]n×3 be the flat-
tened HES RGB image and HHES ∈ Rn×r

+ the correspond-
ing staining densities, with n being the number of pixels and
r the number of stains (for HES r = 3) and I0 ∈ [[0 ; 255]]
the illuminating light intensity. We can write the following
equations:

IHES = I0 exp(−WHHES), with W ∈ R3×r (1)

VHES =WHHES , with VHES = − log(
IHES

I0
) (2)

HHES can be easily calculated using the Moore-Penrose
pseudo inverse of the stain matrix W . We used the Non-
negative Matrix Factorization (SNMF) method defined in [6]
for estimating jointly W and HHES . We estimate a unique
stain matrix for each slide, instead of different matrices for
each patch, by using a random set of tiles in the tissue allow-
ing to learn a robust global stain matrix and to ensure consis-
tency of the Saffron extraction over the WSIs. Once HHES

estimated, we extracted the Saffron concentrations by keep-
ing the corresponding channel. Inspired by [6], we normal-
ized the intensities by dividing them by the pseudo maximum
Saffron concentration at 99% computed over the WSI.

2.4. Predicting Saffron concentration from HE

We trained a UNet [7] architecture with a Mobilenet-v2 [8]
backbone pretrained on Imagenet to predict the Saffron con-
centrations HŜ ∈ [0; 1]n. The optimization process was done
with a final ReLU activation using a Weighted Mean Squared
Error (wMSE Loss). The ReLU activation was used because
the Saffron concentrations belong to the optical density space
which is a linear space with only positive values. We used the
wMSE loss to compensate for the unbalanced distribution of
pixels in the Saffron stained areas (HS > 0) versus the rest
of the image: we computed the proportions of the two classes
on the training set and for each pixel the associated loss was
weighted by the proportion of the opposite class. The opti-
mization was done during 50 epochs using the Adam opti-
mizer with a constant learning rate of 1e-4 and a stopping cri-
terion on the validation loss. We used a batch size of 16 with
512x512 pixels patches at 20x. To avoid over-fitting, we also
used a weight decay of 1e-5 and data augmentation with geo-
metrical transformations (flipping, rotations, shear) and stain
color augmentation [9]. We used a three folds validation on
the seven slides resulting in an average of 8.5k testing patches.
For each fold, the training was done using the training slides
with 80% of the patches (17k patches) as training data and the
other 20% as validation data (1.5k patches).

2.5. HE to HES Reconstruction

To provide the pathologists a realistic-looking HES image
IHE+Ŝ based on quantitative collagen content without di-
rectly predicting the RGB pixels, we defined a reconstruction
method based on stain deconvolution. Let ĤS be the Saf-
fron concentration predicted by our model, IHE be the cor-
responding input HE image and HHE its HE concentration.
We assume that we estimated WHE on the HE slide and WS

on an arbitrary HES slide. If we note [., .] the concatenation
operator, we have:

HẼ = where(HŜ > HE + ε,HE = 0) (3)

VHE+Ŝ = [WHE ,WS ]HHẼŜ (4)

We can get IHE+Ŝ from VHE+Ŝ using (2). In (3), we
model the fact that on HE images Saffron areas have strong
Eosin concentrations whereas on HES images the paired re-
gions have strong Saffron concentration only. Therefore, for
pixels with high Saffron density estimated, we set to zero
the Eosin concentration, otherwise the resulting RGB color
would be close to red (mix between Eosin and Saffron) in-
stead of the desired orange hue. The margin parameter ε was
manually set to 0.1. Note that this method was empirically
designed and can likely be improved upon by simulating the
chemical staining process more precisely. One of the advan-
tages of this method, compared to generative models predict-
ing the HES RGB intensities, is that with stain deconvolution



MAE MAES MAEB mDice DiceS
0.0668 0.1237 0.0303 0.6536 0.8097
± .0002 ± .0003 ± .0088 ± .0003 ± .0231

Table 1. Pixel-wise regression evaluation: Metrics evaluat-
ing the pixel-wise Saffron concentration prediction task ob-
tained with a 3 folds-validation.

we can reconstruct the RGB image while only modifying the
color distribution of the image where the Saffron is predicted.

3. RESULTS

In this section, we present the different results of our method.
First, in Section 3.1. we report the different metrics of our
deep learning model on the pixel-wise regression task and we
show the strong capability of the model to quantitatively esti-
mate the collagen. Then in 3.2, we qualitatively analyze the
performances of the model by looking at predictions and the
reconstructed HES images in some different areas of the tis-
sue. Figures 1, 2 and 3 are linked by the test ROIs that are
drawn in Figure 1.

(a) HE slide (b) HES slide

Fig. 1. Slide Registration - Example of a registered pair of
HE-HES slides in the test set (first fold). The defined regions
A-F (2024x2024 pixels patches) are used in Figures 2 and 3.

3.1. Quantitative analysis

To evaluate our model on the regression task, we reported the
Mean Absolute Error (MAE) on the 3-fold validation sets.
We used three versions of this metric: MAE computed over
all the pixels, MAES in the Saffron areas (HS > 0.05) and
MAEB in the other areas. We also used theDice score as se-
mantic segmentation metric by getting masks by tresholding
the Saffron concentrations. mDice was computed as a mean
of Dice scores obtained using twenty thresholds from 0. to 1.
and DiceS was obtained with a null threshold.

Fig. 2. Quantitative Evaluation - Least squares linear re-
gression between the mean Saffron concentrations from the
predictions mHŜ and the ground truths mHS on test images
(fold 1). Regions with green dots are the regions of Figure 3.

On the first validation fold, we get a lower MAES when
using the MSE Loss (0.1327) compared to the Weighted ver-
sion (0.1240) showing that the wMSE loss allows the model
to perform better on Saffron areas while having similar per-
formances on the background (MAEB : 0.013 (MSE) vs
0.022 (wMSE)).

As the quantification of collagen can have prognostic
value in some pathologies, we tested the quantitative perfor-
mances of our model on the different areas of the Figure 1
and some additional random test patches. For each region,
we compared the global mean Saffron concentration between
the prediction mHŜ and the ground truth mHS . Figure 2
shows that we have a strong linear relationship between our
quantitative predictions and the ground truth, proving the
effectiveness of our model to quantify collagen.

3.2. Qualitative analysis

In Figure 3, we show predictions on the four regions A-D
defined in Figure 1. The columns are in this order: the in-
put HE patches IHE , the estimated HŜ and ground truths
HŜ Saffron concentrations HŜ , the reconstructed HES im-
ages IHE+Ŝ and the registered HES patches IHES . We can
see that our model is able to closely predict the Saffron inten-
sities HŜ compared to the ground truths HS over very differ-
ent areas. At the same time, this Figure shows that the recon-
structed images IHE+Ŝ successfully highlights the collagen
while reasonably looking like a realistic HES image. The real
HES images IHES seem to have weak Eosin concentrations -
which might be caused by the restaining procedure - however
this is not the case for IHE+Ŝ which contains the H and E
concentrations of the input HE image.



IHE HŜ HS IHE+Ŝ IHES

Fig. 3. Prediction Visualization - The columns represent in this order: four input HE patches IHE extracted from the figure 1,
the estimated Saffron concentrations HŜ , the ground truths Saffron concentrations HS , the reconstructed HES images IHE+Ŝ

and the registered HES patches IHES . Regions A and B are in tumor areas while C and D are benign regions.

4. DISCUSSION & CONCLUSION

In this paper, we showed that it is possible to train a deep
learning model that predicts Saffron staining from HE images,
allowing to segment and to quantify the collagen which has
both diagnostic and prognostic value for cancer malignancy.

We trained a UNet to predict Saffron concentrations - ex-
tracted via stain deconvolution - as a proxy task for predict-
ing collagen, on a dataset of seven pairs of registered and
restained HE-HES slides. The Table 1. reports the metrics
of our model on a 3 fold validation sets, reaching a Mean Ab-
solute Error of 0.0668 ± 0.0002 (HS ∈ [0, 1]). The Figure
2 demonstrates the strong capability of our model to estimate
the collagen quantity by showing the strong linear relation-

ship (R2 = 0.9776) of the mean Saffron concentrations be-
tween the predictions and the ground truths on test patches.
Finally, in Figure 3 we show qualitative predictions, illustrat-
ing the convincing spatial Saffron concentration predictions
along with reasonably realistic-looking HES reconstructions.

In future works it would be interesting to expand this
methodology to a bigger multi-organs dataset, so we can train
a general robust Saffron estimator model. We also have not
discussed the domain shift between HE and HES. Our so-
lution can be used as data augmentation and could improve
on HES images the performances of the deep learning mod-
els that are most of the time trained on HE data. We hope
this work can aid in improving the clinical workflow while
reducing reagent costs for laboratories.



5. COMPLIANCE WITH ETHICAL STANDARDS

The dataset used in this work was created at the University of
Veterinary Medicine Vienna with ethical permission.
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